Source code for eradiate.xarray.interp

from __future__ import annotations

__all__ = ["dataarray_to_rgb", "film_to_angular"]

import typing as t

import numpy as np
import xarray as xr

from .. import frame
from ..config import settings
from ..warp import uniform_hemisphere_to_square


[docs] def film_to_angular( da: xr.DataArray, theta: np.typing.ArrayLike, phi: np.typing.ArrayLike, x_label: str = "x", y_label: str = "y", theta_label: str = "theta", phi_label: str = "phi", azimuth_convention: frame.AzimuthConvention | str | None = None, ) -> xr.DataArray: """ Interpolate a hemispherical film data array on an angular grid. Parameters ---------- da : DataArray Data array with film coordinate pixels to interpolate on an angular grid. theta : array-like List of zenith angle values. phi : array-like List of azimuth angle values. x_label : str, default: "x" Label for the width pixel coordinate. y_label : str, default: "y" Label for the height pixel coordinate. theta_label : str, default: "theta" Label for the zenith angle coordinate. phi_label : str, default: "phi" Label for the azimuth angle coordinate. azimuth_convention : .AzimuthConvention or str, optional Azimuth convention used in the produced data array. If unset the default active convention is used. Returns ------- DataArray Data array interpolated on the specified angular grid. """ # TODO: Double check where this function is used and if the azimuth # transformation is correctly applied. # Define azimuth convention if azimuth_convention is None: azimuth_convention = settings.azimuth_convention else: azimuth_convention = frame.AzimuthConvention.convert(azimuth_convention) # Interpolate values on angular grid data = np.empty((len(phi), len(theta))) # Map angular grid points to (x, y) space for i, ph in enumerate(phi): xs = np.empty_like(theta) ys = np.empty_like(theta) angles = np.array([[th, ph] for th in theta.ravel()]) directions = frame.angles_to_direction(angles) film_coords = uniform_hemisphere_to_square(directions) xs.ravel()[:] = film_coords[:, 0] ys.ravel()[:] = film_coords[:, 1] x = xr.DataArray(xs, dims=theta_label) y = xr.DataArray(ys, dims=theta_label) data[i, :] = da.interp(**{x_label: x, y_label: y}).values return xr.DataArray( data, coords=( ( phi_label, frame.transform_azimuth(phi, to_convention=azimuth_convention), ), (theta_label, theta), ), dims=(phi_label, theta_label), )
[docs] def dataarray_to_rgb( da: xr.DataArray, channels: t.Sequence[tuple[str, t.Any]], normalize: bool = True, gamma_correction: bool = True, ) -> np.ndarray: """ Compose an RGB image from radiance data. Parameters ---------- da : DataArray The data array from which radiance data will be taken. It has to be such that data, when selected on a spectral axis, is 2-dimensional. channels : sequence of tuples Three (coordinate label, coordinate value) pairs used to select the data used to compose the image. Channels are ordered as follows: (R, G, B). For instance, to select wavelengths (dimension ``"w"``) at 440 (blue), 550 (green) and 660 (red) nm, use ``channels=[("w", 660), ("w", 550), ("w", 440)]``. normalize : bool, optional If ``True``, the data will be normalized by its maximum value. gamma_correction : bool, optional If ``True``, apply a gamma operator to the data. Returns ------- ndarray An RGB image which can be displayed using :func:`matplotlib.pyplot.imshow`. Warnings -------- The image processing pipeline implemented by this function is rudimentary. It only applies, if instructed, a gamma operator. For more advanced tone mapping operations, use this function with ``normalize=False`` and ``gamma_correction=False``, then apply your own post-processing to the resulting (N, M, 3)-shaped array. """ if len(channels) != 3: raise ValueError("channel list must have 3 elements (R, G, B)") # Collect data result = [] for coord, value in channels: x = da.sel(**{coord: value}).squeeze().values if x.ndim != 2: raise ValueError("only 2D arrays can be assembled into an RGB image") result.append(np.expand_dims(x, axis=-1)) result = np.concatenate(result, axis=2) # Normalize to [0, 1] interval if normalize: result /= np.max(result) # Apply gamma correction if gamma_correction: result **= 1.0 / 2.2 return result